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ABSTRACT

Hydrodynamic models are becoming prevalent design tools for amall scale devices and other
devices in which high energy effects can dominate transport. Most current hydrodynamic models use
a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting
for band structure effects in hydrodynamic device simulation has begun to grow since parsbolic
models can not fully describe the transport in state of the art devices due to the distribution populating
non-parabolic states within the band. This paper presents two different non-parabolic formulations of
the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The
first formulation uses the Kane dispersion relationship (hk)’2m = W(1 + aW) . The second
formulation makes use of a power law {(hk)’/2m = xW"} for the dispersion relation. Hydrodynamic
models which use the first formulation rely on the finominl expansion to obtain moment equations
with closed form coefficients. This limits the energy range over which the model is valid. The power
law formulation readily produces closed form coefficients similar to those obtained using the parabolic
band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range.
The physical significance of the band non-parabolicity is discussed as well as the
advantages\disadvantages and approximations of the two non-parabolic models. A companion paper
describes device simulations based on the three dispersion l:elationships; parabolic, Kane dispersion,

.

and power law dispersion.
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NOMENCLATURE

Carrier Energy

Planck's constant divided by 2n

Reciprocal lattice vector )
Non-parabolicity factor under the Kane dispersion relation, positional dependent
Carrier mass at the band edge, a constant but positional dependent
Adjustable parameters for the power law dispersion relation, both positional dependent
Density of states in momentum space

Conduction band edge

Electron quasi-fermi level

Boltzmann's constant

Electron temperature

Fermi integral of various order

Fermi integral divided by Gamma function

Gamma function

Effective density of states

Reduced energy {(En-EJ)/(KT)}

Semiconductor band gap

Gradient operator in physical space

Gradient operator in k space

Group velocity

Distribution function

Equilibrium distribution function

Relaxation time

Conduction band potentials (electrostatic, affinity, and band gap narrowing)
Electron concentration

Identity matrix
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INTRODUCTION

The use of hydrodynamic models for device simulation are becoming common as
characteristic device dimensions continue to decrease. Hot electron effects can play a dominant role
in carrier transport for high mobility semiconductors. Current hydrodynamic models consist of a set
of conservation equations derived by taking moments of the Boltzmann transport equation (BTE).
During the derivation of the conservation equations the parabolic band spproximation is used to obtain
rather simple coefficients on the forcing terms in the flux equations. By relying on the parabolic band
approximation higher order energy transport effects due to variation in the band structure are
neglected. Interest in accounting for band structure effects in hydrodynamic device simulation ﬂas
begun to grow because parabolic models can not adequately account for high energy eﬂ'ects in
semiconductors with non-parabolic band structures. Non-parabolic band formulations have a history
dating back to the 1950's [1-3]. However drifi-diffusion models and more specifically hydrodynamic
simulators with non-parabolic band formulations arc a very recent topic of research.

Several non-parabolic hydrodynamic models have been reported for homogeneous material
systems [4-7] using the Kane dispersion relationship [3]. The general functional form obtained is
similar to parabolic hydrodynamic models with first order comrections on the diffusion term. Azoff [8]
derived a hydrodynamic model suitable for degenerate heterostructure semiconductors though the final
form of the equations was not directly amenable to current device simulation codes. However, Azoff
clearly showed that a forcing term due to a gradient in the non-parabolicity factor exists. Woolard et.
al. [9] presented 8 non-parabolic hydrodynamic mode! based on moments of the velocity and energy
(u, W(K)) instead of the momentum and momentum squared (hk, W'k*). This leads to a simpler energy
conservation equation. However, the non-parabolic coefficient in the field term and the forcing terms

due to non-uniform band structure were neglected in the other moment equations. Cassi and Riccd

[10] introduced an alternative to the Kane relation in the form of a power law for the dispersion .



relationship. Instead of using the classical Kane dispersion law relating the energy and momentum,
the band was fit over a specified energy range using two adjustable parameters. The spproximations
and assumptions implied by assuming the power law formulation were absent. It will be shown below
that the power law formulation of the dispersion relation leads to & more simplistic and compact
formulation than the classical Kane expression.

The purpose of this paper is to introduce two non-parabolic hydrodynamic formulations
suitable for the simulation of devices with inhomogencous material layers. The final form of the
conservation equations will be in a form which will allow incorporation into existing device simulation
codes, similar to the parabolic formulation. These different formulations are based on different
choices for the dispersion relationsflip, one uses the standard Kane dispersion for non-parabolic bands
and the second uses a power law relationship [10]. For comparison the parabolic hydrodynamic
formulation will also be presented. The form of the conservation equations are strongly affected by
the non-parabolicity factor of the bands, the choice of the dispersion relationship, and the usumpﬁons
made to simplify the coefficients. As in the case of the parabolic formulation, both non-parabolic
formulations require estimates of higher order moments to provide mathematical closure of the
relationships. It will be shown that more physical insight can be obtained by examining the terms
from the power law formulation due to their similarity to the parabolic formulation. The power law is
advantageous in that the terms of the conservation equations are the same as in the parabolic

formulation, except for a simple multiplicative constant when Boltzmann statistics are employed.

Dispersion Relations and Carrier Concentration

The two non-parabolic dispersion relations relating the energy to the momentum are

.
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Where o is the non-parabolicity factor in the Kane dispersion relation. This parameter is usually

calculated from a keP pertprbation approach to the band structure. The o factor can also be estimated

in terms of known parameters of the semiconductor [10]. The second non-parabolic dispersion relation is the
power law formulation of Cassi and Riccd [10] which is not a first order approach to the band structure as
compared to the Kane dispersion relation. Instead, the parameters x and y are obtained by a best fit to
equation (1a) over a specified energy range. In reference [10] this energy range was (1.3 eV, 3.0¢eV) and

the authors produced a very good fit for o = 0.4789, determined by inference from x and y and is reproduced
in Figure 1. The formulae for the carrier concentration using these two dispersion relations and assuming

Fermi-Dirac statistics are (the binomial expansion has been employed for equation (2a))
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In the case of the Kane dispersion the non-parabolicity is a perturbation to the parabolic model
regardless of the fact that Fermi-Dirac statistics were used in the derivation instead of Boltzmann
statistics. In the power law case, unlike the a formulation, the carrier concentration will only differ
from the parabolic by a multiplicative constant if Boltzmann statistics are assumed.

Within the hydrodynamic simulation of a device the carrier concentration is calculated by
directly solving the continuity equations. Inspection of equations (2a) and (2b) shows that the
concentration in both cases is a function of the reduced energy, N. The determination of 1| at each
position is crucial to the successful simulation of a device since most of the factors within the
transport equations i.c. number of ionized dopants, Shockley-Read-Hall recombination etc., are
functions of 7| as well. Therefore, from the knowledge of the carrier concentration at any speciﬁé
position the reduced energy, 1, is cnlculated by suitably inverting equations (28) and (2b). With these

facts in mind it is illustrative to compare the non-parabolic formulatlons for the carrier concentrahon



to the parabolic formulation at various reduced energy values. Figure 2 displays the deviation from
the parabolic formulation for o = 0.4789, x = 1.365, and y = 1.52 [10]). The case of the full Kane
dispersion relation before binomial expansion is also given in Figure 2 and shows that the binomial
expansion is justified for this case of the non-parabolicity parameter; the two curves are almost
identical throughout the entire reduced energy range. Notice also that the dwinion of the alpha
nonparabolicity formulations is at most 5% from the parabolic case until the reduced energy exceeds
zero, when the difference in the orders of the Fermi integral is larger. However, in the case of the
power law fit at high energy, the deviation from the parabolic case is more than 82% and more than
87% from the o formulation. To explain this large difference the plots of the dispersion relations must
be re-examined, Figure 1. At the high energy part of the curve the power law and o formulations
have nearly identical dispersion relations. The insert in Figure 1 shows the low energy range and
shows the maximum deviation of the two curves. Though there is a greater deviation between the two
curves at lower energy than at high energy, the maximum difference between the two curves is
insufficient by itself to fully account for the large difference in the carrier concentrations. However,
carrier concentration depends upon both the density of states and the distribution function. Since the
distribution function weights more heavily to lower energy states, & mismatch at low energy is
strongly reflected in the product of the distribution function times the density of states and
subsequently the carrier concentration. Therefore, in order to obtain a matched value of the carrier
concentration, it is critical to have a closer fit to the low eacrgy range of the band. For comparison,
a low energy fit was made using a different set of for x and y, x = 1,185 and y = 1.052. These values
of x and y were determined by fitting the power law dispersion relation over the low energy range
(0.0 eVSWS 0.2eV). As can be seen from the inset of Figure 1, the dispersion relations match
very closely at Jow energy but deviate. significantly at higher energy. Figure 2 nlsq shows the

calculated carrier concentrations for various reduced energy values using the low energy power law fit



factors. Compared to the power law fit to the high energy range, using the power law fit to the low
energy range of the band produces concentration. values which closely match those obtained using the
o formulation.

Particle Flux Equations

The general flux (© = v,) conservation equation is determined by taking moments of the BTE
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Notice that the third, fourth and fifth terms on the left hand side are tensor products. The factor of 3
in the fifth term is due to the order of parenthesis in the original moment equation. This moment
equation can not be processed further until some functional form of the effective mass is assumed,
which depends on the choice of the dispersion relation. Using the parabolic dispcrsi;n and the two
dispersion relations in equation (1), the resulting flux equations are (positional subscript on the

gradient operators has been removed)
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Each of these equations must be integrated over all k space or equivalently over energy using the
density of states [15]). Before the integration is performed one more assumption must be made, that
the relaxation time is independent of k or W. If the constant relaxation time assumption is not made
then the energy dependence of the relaxation time must be moved through the gradient operator on the
second term in each of equations (4-6) and a term accounting for the gradient of the relaxation time
must be re<created. Changing the integration from k space to energy space, substituting for the

mobility, (u=t/m), and making V,f, equal to zero gives the following integral equations
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To produce closed form solutions for the integrals in equation (8) the binomial expansion is used



repeatedly and all terms of order of or higher are set to zero, to finally become
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The only term in the power law flux equation (equation (9)) which will require an expansion is the Vy
term due to the In(W) factor in the integrand. The expansion may only be required for certain choices
of the distribution, but to maintain generality it is applied for all distributions. A parabolic

interpolation, using the points 0, 0.5, and 1, to the part of the equation containing the log term is

1. Le
[ womaw « s05 "mon[w-maw an
With the above substitution the power law flux equation can be written as
* 10 L
209 20 gy [ aw ———Iy""E ol e« BTy [ aw
xy
p 28 » P B
- 2%, [ gy BT g emos et w-maw a2)
y y

. p,/iVe,(%-l)g!fW‘;JW - =RV

The spproximation int equation (11) tends to degrade as y increases. However, this forcing term will
pot appear in simulations of homogeneous materials. In the case of inhomogeneous materials systems
this term may be quite small as y has only a limited range, (1 Sy £2).

One of the goals of this paper is to derive a hydrodynamic model suitable for fast efficient

simulation of state of the art devices. As previously stated the parabolic model is inadequate for
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certain material systems due to the fact that their band structures deviate dramatically from a parabolic
shape at high energies. In these situations, a non-parabolic band structure provides a more accurate
dc.;saiption. As discussed above, the full o formulation captures the desired physics, but is
unattractive because the coefficients within the transport equations need to be numerically evaluated.
In contrast, the binomial o formulation and the power law formulation provide closed form
expressions for the transport coefficients. However, the guestion remains as to their ability to display
the proper trends; how closely do the coeflicients match the full & formulation? We will show that
the binomial o formulation has a limited energy and non-parabolicity range due to the binomial
approximation. Non-physical results will be obtained if the formulation is extended into regions
outside the binomial limit. The po;rer law does not produce non-physical results but more closely
matches the parabolic formulation when fit to the low energy part of the band.

The coefficients on similar forcing terms in the various formulations can now be compared to
examine the impact of the non-parabolicity factor and approximations made during the derivation.
The comparison is done at this time to avoid any confusion from assuming a distribution function.
Table I lists the forcing terms which are compared and the terms within the integrands involved.
Table 1I contains the values of the non-parabolicity factors at which these factors are compared, this
includes values of o from 0.04 to 4.0 and appropriate (x.y) values fit to these o values over two
different energy ranges (0.0, 0.2) and (1.5, 3.0). Figure 3 shows the prefactor for the diffusion term
from all the flux equations; Figure 3a is for slightly non-parabolic bands (o = 0.04); 3b is for the
pon-parabolicity in reference [10] (o = 0.4789), and 3c is for a highly pon-parabolic band (o = 4.0).
Figures 4 a<c and 5 a-c display the prefactors on the forcing terms from changes in the effective mass
and the field for the three degrees of_' non-parabolicity. For all three forcing terms at the lowest values
of non-parabolicity (Figures 3a, 4a, 5a) the prefactors compare favorably with the pmbolic

formulation. For the diffusion term (Figures 3a<c) as the non-parabolicity factor increases the two



cases of the power law formulation match very closely to the full o formulation. On the other hand
the o formulation that utilizes the binomial expansion is very different, especially at the highest value
of non-parabolicity considered. From Figure 3¢ it is clear that the binomial o formulation is clearly
incorrect if the energy exceeds 0.5 eV. Even before this point the diffusion will be underestimated.
In the case of the mass term, Figure 4, the power law formulation which is fit over the low energy
range is much closer to the parabolic case, as expected due to the small change in the fitting
parameters from their parabolic values. However, the power law with the parameters fit over a larger
energy range more closely matches the full o formulation. As in the case of the diffusion term, the
binomia! o formulation severely underestimates the effect of this forcing term especially as the non-
parabolicity is increased, and is limited to energies less than 0.1 eV for o = 4.0, .The coeflicients for
the field term, Figure 5, follow the same conclusions as for the mass term. From these figures it is
clear that the binomial o formulation has a very limited energy range of validity as the non-
parabolicity factor is increased. Using this formulation at higher energies or high non-parabolicity
factors can give un-physical results due to the prefactors changing sign. On the other hand, the power
law formulation with parameters {it over a small energy range will tend to produce results -which more
closely match the parabolic band model. It will not produce un-physical trends and does appear to
bave a larger range of validity for both energy and non-parsbolicity factors. The case of the power
law with parameters fit over a large energy range more closely matches the full o formulation in terms
of the forcing coefficients. However, due to the problems previously described for the calculation of
the carrier concentration this advantage may be immaterial.

Table I can also be used to gain some physical insights into transport in the non-parabolic
band structures, especially using the power law formulation. First notice that as the non-parabolicity

factor is decreased (0, x—1, y—1) all the coefficients reduce to the parabolic case indicating that

all three formulations are equivalent in this respect. Al the non-parabolicity factor and energy



increases the binomial & formulation can sctually predict a change in the sign of a forcing term. In
the full o formulation the sign on the forcing terms does not change but it is unciear as to how the
term decr;ucs. In the case of the power law, when the parameter y equals 2 it is obvious that the
field term will become identically 2ero. The only terms which will be non-zero in the flux equation
will be the diffusion, gradient in mass, and gradient in the non-parabolicity terms. This can be
explained with the use of the power law energy equation {equation (1b)} and the group velocity
equation. When y equals 2 there is a linear relationship between the momentum and energy, the
bands are V shaped. The group velocity is proportional to the gradient of the energy with respect to
k, which for the case of y equals 2 means that the group velocity is a constant. Therefore, no matter
how much force is applied to the electron by external forces the velocity is not increased. The only
factors which can produce current are gradients which can change this fixed velocity; i.c. changes in
mass or non-parabolicity factor, or changes in the pumber of carriers moving at this fixed velocity,
diffusion. Therefore, non-parabolic formulations which do not include coefficients to diminish the
field term as the non-parabolicity increases overestimate the flux.

At this point in the derivation a recursion relation must be formulated, a distribution function
assumed, or some other mathematical method {Minimum-Maximum theorem} must be used to provide
mathematical closure for equations (7), (10), and (12). Since, a goal of this paper is the formulation
of models suitable for the numerical simulation of devices the first two options are explored [16]. A
recursion relation would allow moments of higher order to be approximated by Jlower order moments,
the lower orders are calculated from the conservation equations. This option does nbt require that a
specific form of the distribution function be used, unless the recursion relations are based on a specific
distribution. However, in the case of non-pmbolic bands the standard recursion relations may no
longer be applicable [9]. Therefore, this option was not p\mued The other option, and the one

chosen for this work, is to assume a specxﬁc form for the dlsmbuhon function, higher moments can
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then be calculated based on the known distribution function. Some of the choices for the distribution
function include heated Maxwellian, shified and heated Maxwellian, heated Fermi-Dirac, or shifted
and heated Fermi-Dirac. Since the Maxwellian distributions can be recovered by relaxing the
degeneracy, the Fermi-Dirac distributions were the only ones considered for this work.

In the non-parabolic formulation a simple relation between energy and velocity will not exist
due to the change in the density of states. Also higher order powers of the energy are required to
close the relationships in the o formulation, this will require cross product terms involving the
temperature and the-velocity. In addition, the power law formulation has non-integer powers of the
energy which will be very difficult to evaluate for the shified and heated distributions. Due to these
conditions and the fact that all the formulations break down as the energy rises, the heated Fermi-

Dirac distribution was used to close the relationships. The flux equation in the binomial o formulation
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The flux equation in the power law formulation becomes
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The reader can verify that as the non-parabolicity factors are diminished, (=0, x,y—1), the two non-

parabolic formulations reduce to the standard parabolic case. The equations also reduce to simpler
forms when the degeneracy effects are ignored (all orders of Fermi integral reduce to exponentials).
The flux equations can be discretized using normal techniques to produce comparable simulation
codes under various assumptions [17].

Energy Flux Equations

For the energy flux equation (6 = Wv,) the general conservation equation is
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Notice that the fourth through seventh terms on the left band side are tensor products. As in the case
of the particle flux moment the energy flux moment equation can not be processed further until some
functional form of the effective mass is assumed. By making similar assumptions, substitutions, and
spproximations {binomial expansion, Fermi-Dirac statistics, equipartition of energy ...} the energy flux

equations for the three dispersion relationships become
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First, equation (16) corrects a sign error on the order of a Fermi integral which occurred in an earlier
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publication [17). Again, the reader can verify that the non-parabolic formulations reduce to the
parabolic case as the non-parabolicity factors are decreased. As in the case of the particle flux

equations the energy flux equations can be discretized using normal techniques [17].

CONCLUSIONS
Two formulations of the hydrodynamic model have been presented for the simulation of non-
parabolic inhomogeneous material systems, the standard Kane formulation and the power law
formulation of Cassi and Riccd. Both forms reduc;. to the parabolic hydrodynamic model as the non-

parabolicity factors are diminished. The forcing terms in the particle and encrgy flux equations due to
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variations in the non-parabolicity factors of the bands as suggested by Azoff have been re-created in
both non-parabolic formulations. It was shown that the binomial o formulation is suitable for the
calculation of the camrier concentration but has a limited energy and non-parabolicity range when
applied to the coefficients of the flux equations. Extending the binomial & formulation past these
limits Jeads to non-physical terms in both the particle and energy flux equations. In the case of the
power law formulation it was shown that when the adjustable parameters were fit to the high energy
range the deviation in the carrier concentration from both the parsbolic and & cases was extreme.
When fit to the lower energy range the power law produced carrier concentrations comparable to the o
formulations. The energy and non-parabolicity range of the power law formulation for the particle
and energy flux equations is larger than the binomial o formulation, but it is stil] limited by the
adjustable parameters. However, unlike the binomial a formulation the power law will not lead to
physically unrealistic results, but will tend to more closely match the parabolic formulation when the
adjustable parameters are fit over the low energy portion of the band. It is shown and argued using
the power law formulation and a high non-parabolicity factor (y = 2) that a dampening factor must
exist on the field term in the particle flux equation to account for the non-parabolicity of the bands in
both non-parabolic formulations. Particle flux and energy flux equations using a beated Fermi-Dirac

distribution function are also presented, to allow for incorporation into existing device simulators.
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Tsble 1. Terms (prefactors) within the integrands of the forcing coefficients which are graphically

compared.
Formulation Equation Diffusion Term Mass Term Vm Field Term Ve,
Number _
3
3
parabolic w
3 3 1 1
W1 +aW)? W(l+aW)i1+4aW) Wil+aW)?
o formulation ®) (1+2aW) (1+2a W) (1+2a Wy
o with 3 3 1
binomial wif1-8% wi;-19e¥ wif; - 1e¥
: (10) 6 2
expansion
used
1 1 1 2
x2 14 %3 1-2 1@yt
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Table II. Values of the non-parabolicity factors which are compared. This includes o values from
0.04 to 4.0 and (x,y) values fit to these o values over two different energy ranges (0.0, 0.2) and (1.5,

3.0).
W
Case a vy (00.02) | my (15,39 |
. 0.04 1.0148, 1.0045 | 10207, 10827 |
b 04789 1.185,1.052 1365,152 |
¢ 4.0

2.975,1.322

4.8233, 1.901




Figure Captions

Figure 1. Dispersion relations for the Kane model (solid line, & = 0.4789), the power law formulation
(dashed line, x=1.365, y = 1.52 fit over high energy, 1.5 S W £ 3.0 eV) and the power law
formulation (dotted line, x=1.185, y = 1.052 fit over low energy, 0.0 S W £0.2 eV). The insert
shows the detail of the low energy range.

Figure 2. Deviation, from the parabolic case, of the carrier concentration as & function of the reduced
encrgy for the full o formulation (solid line, ¢ = 0.4789), binomial & (dotted), power law fit at high
energy (dasbed, x=1.365, y=1.52), and power law fit at Jow energy (dashed, x=1.185, y=1.052)
dispersion relations as a function of the reduced eaergy (m) at T=300 K.

Figure 3. Comparison of the integrand coeflicients (prefactors) occurring on the diffusion term of the
particle flux formulations. Sec Table I and II for the exact form of the equations and degrees of non-
parabolicity considered.

Figure 4. Comparison of the integrand coefficients (prefactors) occurring on the gradient of the
effective mass term of the particle flux formulations. See Table I and 11 for the exact form of the
equations and degrees of non-parabolicity considered.

Figure 5. Comparison of the integrand coefficients (prefactors) occurring on the gradient of the
potential term occurring in the particle flux formulations. See Table I and II for the exact form of
the equations and degrees of non-parabolicity considered.
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Deivation of the Carrier
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